Single dose of mirtazapine modulates whole-brain functional connectivity during emotional narrative processing.

نویسندگان

  • Emma Komulainen
  • Enrico Glerean
  • Katarina Meskanen
  • Roope Heikkilä
  • Lauri Nummenmaa
  • Tuukka T Raij
  • Jari Lahti
  • Pekka Jylhä
  • Tarja Melartin
  • Erkki Isometsä
  • Jesper Ekelund
چکیده

The link between neurotransmitter-level effects of antidepressants and their clinical effect remain poorly understood. A single dose of mirtazapine decreases limbic responses to fearful faces in healthy subjects, but it is unknown whether this effect applies to complex emotional situations and dynamic connectivity between brain regions. Thirty healthy volunteers listened to spoken emotional narratives during functional magnetic resonance imaging (fMRI). In an open-label design, 15 subjects received 15mg of mirtazapine two hours prior to fMRI while 15 subjects served as a control group. We assessed the effects of mirtazapine on regional neural responses and dynamic functional connectivity associated with valence and arousal. Mirtazapine attenuated responses to unpleasant events in the right fronto-insular cortex, while modulating responses to arousing events in the core limbic regions and the cortical midline structures (CMS). Mirtazapine decreased responses to unpleasant and arousing events in sensorimotor areas and the anterior CMS implicated in self-referential processing and formation of subjective feelings. Mirtazapine increased functional connectivity associated with positive valence in the CMS and limbic regions. Mirtazapine triggers large-scale changes in regional responses and functional connectivity during naturalistic, emotional stimuli. These span limbic, sensorimotor, and midline brain structures, and may be relevant to the clinical effectiveness of mirtazapine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A single dose of mirtazapine attenuates neural responses to self-referential processing.

Increased self-focus is a core factor in the psychopathology of depression. Cortical midline structures (CMS) are implicated in the neurobiology of self, depression and antidepressant treatment response. Mirtazapine, an antidepressant that increases serotonin and norepinephrine release, enhances processing of positive and attenuates processing of negative emotional information in healthy volunt...

متن کامل

Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging

Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...

متن کامل

سازمان ادراکی و انسجام مرکزی حین پردازش‌های دیداری در کودکان اُتیسم: شواهدی برای از هم گسیختگی ارتباطات کارکردی در مغز اُتیستیک

Objective: A variety of evidence demonstrate altered perceptual functioning during visual processing in the brain of children with autism.it possibly is related to or the cause other diagnostic symptom in autism spectrum. In the present study visual perceptual organization in autistic children is studied. These processes require central coherence and typical functional connectivity among neural...

متن کامل

Disconnection from others in autism is more than just a feeling: whole-brain neural synchrony in adults during implicit processing of emotional faces

BACKGROUND Socio-emotional difficulties in autism spectrum disorder (ASD) are thought to reflect impaired functional connectivity within the "social brain". Nonetheless, a whole-brain characterization of the fast responses in functional connectivity during implicit processing of emotional faces in adults with ASD is lacking. METHODS The present study used magnetoencephalography to investigate...

متن کامل

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychiatry research

دوره 263  شماره 

صفحات  -

تاریخ انتشار 2017